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CHAPTER 0
Preliminaries

1. {1, 2, 3, 4}; {1, 3, 5, 7}; {1, 5, 7, 11}; {1, 3, 7, 9, 11, 13, 17, 19};
{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}

2. a. 2; 10 b. 4; 40 c. 4: 120; d. 1; 1050 e. pq2; p2q3

3. 12, 2, 2, 10, 1, 0, 4, 5.

4. s = −3, t = 2; s = 8, t = −5

5. By using 0 as an exponent if necessary, we may write a = pm1
1 · · · p

mk

k and
b = pn1

1 · · · p
nk

k , where the p’s are distinct primes and the m’s and n’s are
nonnegative. Then lcm(a, b) = ps11 · · · p

sk
k , where si = max(mi, ni) and

gcd(a, b) = pt11 · · · p
tk
k , where ti = min(mi, ni) Then

lcm(a, b) · gcd(a, b) = pm1+n1
1 · · · pmk+nk

k = ab.

6. The first part follows from the Fundamental Theorem of Arithmetic; for
the second part, take a = 4, b = 6, c = 12.

7. Write a = nq1 + r1 and b = nq2 + r2, where 0 ≤ r1, r2 < n. We may
assume that r1 ≥ r2. Then a− b = n(q1 − q2) + (r1 − r2), where
r1 − r2 ≥ 0. If a mod n = b mod n, then r1 = r2 and n divides a− b. If n
divides a− b, then by the uniqueness of the remainder, we then have
r1 − r2 = 0. Thus, r1 = r2 and therefore a mod n = b mod n.

8. Write as+ bt = d. Then a′s+ b′t = (a/d)s+ (b/d)t = 1.

9. By Exercise 7, to prove that (a+ b) modn = (a′ + b′) modn and
(ab) modn = (a′b′) modn it suffices to show that n divides
(a+ b)− (a′ + b′) and ab− a′b′. Since n divides both a− a′ and n divides
b− b′, it divides their difference. Because a = a′modn and b = b′modn
there are integers s and t such that a = a′ + ns and b = b′ + nt. Thus
ab = (a′ + ns)(b′ + nt) = a′b′ + nsb′ + a′nt+ nsnt. Thus, ab− a′b′ is
divisible by n.

10. Write d = au+ bv. Since t divides both a and b, it divides d. Write
s = mq + r where 0 ≤ r < m. Then r = s−mq is a common multiple of
both a and b so r = 0.

11. Suppose that there is an integer n such that abmodn = 1. Then there is
an integer q such that ab− nq = 1. Since d divides both a and n, d also
divides 1. So, d = 1. On the other hand, if d = 1, then by the corollary of
Theorem 0.2, there are integers s and t such that as+ nt = 1. Thus,
modulo n, as = 1.

Full file at  https://buklibry.com/download/complete-solutions-manual-contemporary-abstract-algebra-9th-edition-by-joseph-gallian/

Download full file from buklibry.com



46

CHAPTER 8
External Direct Products

1. Closure and associativity in the product follows from the closure and
associativity in each component. The identity in the product is the n-tuple
with the identity in each component. The inverse of (g1, g2, . . . , gn) is
(g−11 , g−12 , . . . , g−1n ).

2. In general, (1, 1, . . . , 1) is an element of largest order in
Zn1
⊕ Zn2

⊕ · · · ⊕ Znt
. To see this note that because the order of the 1 in

each component is the order of the group in that component, |(1, 1, . . . , 1)|
= lcm(n1, n2, . . . , nt) and the order of every element in the product must
divide lcm(n1, n2, . . . , nt).

3. The mapping φ(g) = (g, eH) is an isomorphism from G to G⊕ {eH}. To
verify that φ is one-to-one, we note that φ(g) = φ(g′) implies
(g, eH) = (g′, eH) which means that g = g′. The element
(g, eH) ∈ G⊕ {eH} is the image of g. Finally, φ((g, eH)(g′, eH)) =
φ((gg′, eHeH)) = φ((gg′, eH)) = gg′ = φ((g, eH))φ((g′, eH)). A similar
argument shows that φ(h) = (eG, h) is an isomorphism from H onto
{eG} ⊕H.

4. (g, h)(g′, h′) = (g′, h′)(g, h) for all g, g′, h, h′ if and only if gg′ = g′g and
hh′ = h′h, that is, if and only if G and H are Abelian. A corresponding
statement holds for the external direct product of any number of groups.

5. If Z ⊕ Z = 〈(a, b)〉 then neither a nor b is 0. But then (1, 0) 6∈ 〈(a, b)〉.
Z ⊕G is not cycle when |G| > 1.

6. Z8 ⊕ Z2 contains elements of order 8, while Z4 ⊕ Z4 does not.

7. Define a mapping from G1 ⊕G2 to G2 ⊕G1 by φ(g1, g2) = (g2, g1). To
verify that φ is one-to-one, we note that φ((g1, g2)) = φ((g′1, g

′
2)) implies

(g2, g1) = (g′2, g
′
1). From this we obtain that g1 = g′1 and g2 = g′2. The

element (g2, g1) is the image on (g1, g2) so φ is onto. Finally,
φ((g1, g2)(g′1, g

′
2)) = φ((g1g

′
1, g2g

′
2)) = (g2g

′
2, g1g

′
1) = (g2, g1)(g′2, g

′
1) =

φ((g1, g2))φ((g′1, g
′
2)). In general, the external direct product of any

number of groups is isomorphic to the external direct product of any
rearrangement of those groups.

8. No, Z3 ⊕ Z9 does not have an element of order 27. See also Theorem 8.2.

9. In Z6 ⊕ Z2, |〈(1, 0)〉| = 6 and |〈(1, 1)〉| = 6.
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16/Polynomial Rings 96

26. Consider 〈2, x〉 = {2f(x) + xg(x)|f(x), g(x) ∈ Z[x]}.

27. We start with (x− 1/2)(x+ 1/3) and clear fractions to obtain
(6x− 3)(6x+ 2) as one possible solution.

28. If a had multiplicity greater than 1, then we could write
f(x) = (x− a)2g(x). Now use the product rule to calculate f ′(x).

29. The proof given for Theorem 16.2 with g(x) = x− a is valid over any
commutative ring with unity. Moreover, the proofs for Corollaries 1 and 2
of Theorem 16.2 are also valid over any commutative ring with unity.

30. Notice that the proof of the division algorithm holds for integral domains
when g(x) has the form x− a. Likewise the proofs of the Factor Theorem
and Corollary 3 of Theorem 16.2 hold.

31. Observe that f(x) ∈ I if and only if f(1) = 0. Then if f and g belong to I
and h belongs to F [x], we have (f − g)(1) = f(1)− g(1) = 0− 0 and
(hf)(1) = h(1)f(1) = h(1) · 0 = 0. So, I is an ideal. By Theorem 16.5,
I = 〈x− 1〉.

32. Use the Factor Theorem.

33. This follows directly from Corollary 2 of Theorem 15.5 and Exercise 11 in
this chapter.

34. Consider the ideal 〈x3 − x〉.

35. For any a in U(p), ap−1 = 1, so every member of U(p) is a zero of
xp−1 − 1. From the Factor Theorem (Corollary 2 of Theorem 16.2) we
obtain that g(x) = (x− 1)(x− 2) · · · (x− (p− 1)) is a factor of xp−1 − 1.
Since both g(x) and xp−1 − 1 have lead coefficient 1, the same degree, and
their difference has p− 1 zeros, their difference must be 0 (for otherwise
their difference would be a polynomial of degree less than p− 1 that had
p− 1 zeros).

36. By Theorem 16.5 the only possibility for g(x) is ±(x− 1). By Theorem
15.3 Z[x]/Ker φ is isomorphic Z. The only possibilities for g(x) are
a(x− 1) where a is any nonzero rational number. Q[x]/Ker φ is
isomorphic Q. x in Z. But then g(x) = f(x)− a has infinitely many zeros.
This contradicts Corollary 3 of Theorem 16.2.

37. C(x) (field of quotients of C[x]). Since p does not divide (p− 1) we know
that p divides (p− 2)!− 1. Thus, (p− 2)! mod p = 1.

38. When n is prime, use Exercise 37. When n is composite and greater than
4, (n− 1)! mod n = 0.

39. By Exercise 38, (p− 1)! mod p = p− 1. So, p divides
(p− 1)!− (p− 1) = (p− 1)((p− 2)!− 1).
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CHAPTER 28
Frieze Groups and Crystallographic
Groups

1. The mapping φ(xmyn) = (m,n) is an isomorphism. Onto is by
observation. If φ(xmyn) = φ(xiyj), then (m,n) = (i, j) and therefore,
m = n and i = j. Also, φ((xmyn)(xiyj)) = φ(xm+iyn+j) =
(m+ i, n+ j) = (m,n)(i, j) = φ(xmyn)φ(xiyj).

2. 4

3. Using Figure 28.9 we obtain x2yzxz = xy.

4. x−4y

5. Use Figure 28.9.

6. Use Figure 28.8.

7. x2yzxz = x2yx−1 = x2x−1y = xy
x−3zxzy = x−3x−1y = x−4y

8. It suffices to show y−1xy = xi and z−1xz = xj for some i and j.

9. A subgroup of index 2 is normal.

11. a. V, b. I, c. II, d. VI, e. VII, and f. III.

12. a. V b. III c. VII d. IV e. V

13. cmm

14. Reading down the columns starting on the left we have:
pgg, pmm, p2, p1, cmm, pmg, pg, pm, p3, p4, p4m, p4g, cm, p6,
p3m1, p31m, p6m.

15. a. p4m, b. p3, c. p31m, and d. p6m

16. The top row
α−3β2, α−2β2, α−1β2, β2, αβ2.

The bottom row is

α−2β−1, α−1β−1, β−1, αβ−1, α2β−1, α3β−1.
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